

Probabilistic design of wind turbine blades

John Dalsgaard Sørensen
Aalborg University & Risø-DTU
Denmark
jds@civil.aau.dk

Henrik Stensgaard Toft
Aalborg University
Denmark
hst@civil.aau.dk

- Introduction
- Reliability-based design of wind turbines
- Reliability of blade with defects
 - Example ULS
- Calibration of safety factors
 - Example Fatigue
- Summary / conclusions

Introduction

Goal: minimize the total expected life-cycle costs

 \rightarrow minimize COE

Initial costs: dependent on **reliability** level

O&M costs: dependent on O&M strategy,

availability and reliability

Failure costs: dependent on **reliability**

Introduction

Research projects:

- UpWind (EC) Integrated wind turbine design
 - Uncertainty modeling and reliability / standards

- Probabilistic Design of Wind Turbines (DSF)
- Reliability-based analysis applied for reduction of cost of energy for offshore wind turbines (DSF)
 - Reliability-based analysis and design of wind turbine blades
 - Risk-based operation and maintenance of offshore wind turbines
 - Reliability-based design of wind turbine foundations
- Norwegian Centre for Offshore Wind Energy (NORCOWE)

- Reliability analysis of wind turbines basis for O&M planning
- Risk-based operation and maintenance of offshore wind farms

Reliability modeling of wind turbines

Analysis of failure probabilities based on different types of information:

- Observed failure rates
 Classical reliability theory
- Probabilistic models →
 failure probabilities

Structural Reliability Theory:

- Limit state equations
- Stochastic models for uncertain parameters
- Failure probabilities by FORM/ SORM / simulation

Mechanical / electrical components

Structural components

Reliability-based design

Challenges by Probabilistic / reliability-based design:

- Limit state equations related to design equations
- Stochastic models for uncertain parameters
- System modelling
- Target / minimum reliability level

Benefits by Probabilistic / reliability-based design:

- Optimal design for each component → uniform reliability
- Uncertainties related to the specific site, component and manufacturing process can be used
- Information from tests / monitoring can be taken into account in a rational way by a Bayesian statistical approach

Reliability-based design

System aspects

- Series / parallel system?
- Damage tolerance
- Robustness

Robustness (system reliability) can be increased by

- Increased redundancy
 - mechanical load sharing
 - statistical parallel system effects
- Increased ductility
- Protecting the wind turbine to (unforeseen) incidents and defects
- Good quality control in all phases

Target / minimum reliability level:

- Building codes: e.g. Eurocode EN1990:2002:
 - $\text{ annual } P_F = 10^{-6}$
- IEC 61400-1 & -3: wind turbines
 - annual $P_F \sim 10^{-4}$ 10^{-3}

- Failure of blades:

approx. 10⁻⁴ - 10⁻³ per year

Wind turbine collapse:

approx. 10^{-5} - 10^{-4} per year

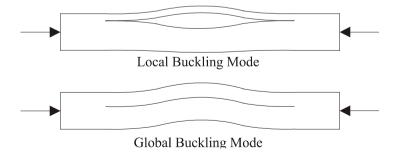
Design wind turbine (component) such that

• Probability of failure $P_F \leq \max P_F$

Reliability-based design of blades

- Combination of
 - Theoretical & computational models
 - Tests of coupons / materials
 - Tests of subcomponents
 - Few full-scale tests
 - Information from prototype wind turbines
 - Quality control / NDI
 - Measurements of climatic conditions
- Information are subject to physical, model, statistical and measurement uncertainties
- Uncertainties can be assessed and combined by use of *Bayesian statistical methods* for use in probabilistic design.

Local production defects:

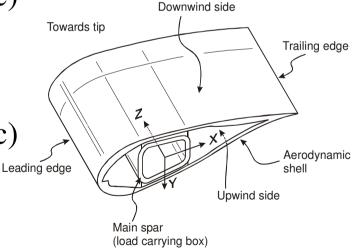

- Delaminations
- Wrinkles
- Matrix cracks

- Voids
- Defects in glued joints
- ..

Model parameters:

- Type of defect
- Size of defect
- Position of defect

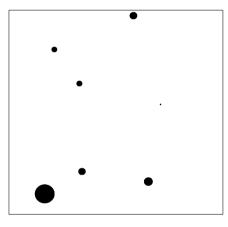
Delaminations:

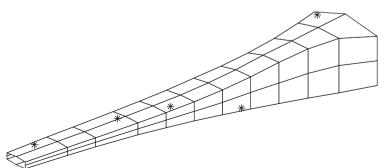


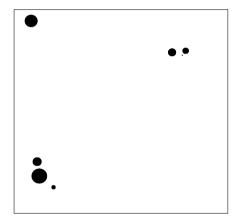
Uncertainties in calculation of the load carrying capacity for wind turbine blades

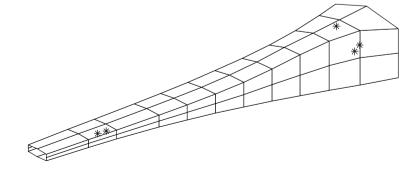
- 1. Material properties
 - Physical uncertainty (Aleatory)
 - Statistical uncertainty (Epistemic)
- 2. Finite Element calculation
 - Model uncertainty

(Epistemic)

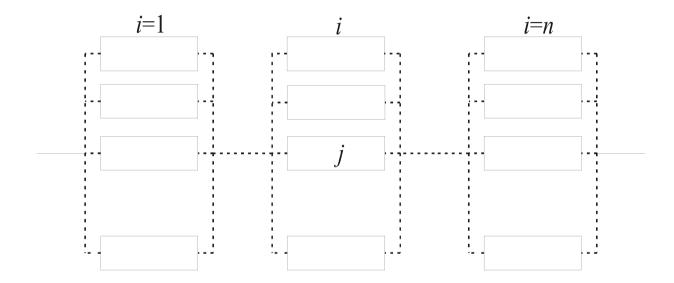

- 3. Failure criteria
 - Model Uncertainty (Epistemic)




- Stochastic model for Defects


Model 1
Completely Random Distribution

Model 2 Random Cluster Distribution

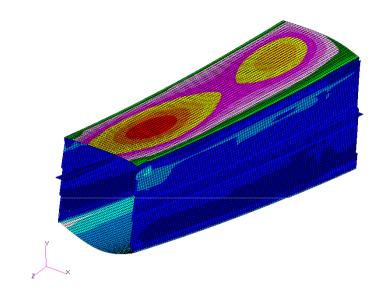


- System reliability

System model of wind turbine blade:

Probability of failure for the system:

$$P_F = P\left(\bigcup_{i=1}^n \bigcap_{j=1}^m \left(g_{ij} \le 0\right)\right)$$


Reliability of blades – with defects - Load Carrying Capacity of Main Spar

Failure of components by:

- Maximum Strain
- First Ply Failure

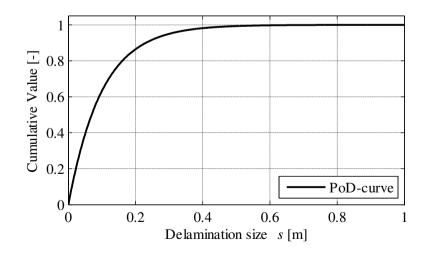
Limit state function for component including the influence of a defect:

$$g(\alpha) = zX_R \alpha R(\mathbf{\epsilon}_{\text{max}}, \mathbf{E}) - X_L L$$

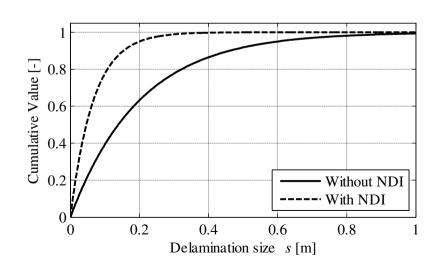
α strength reduction due to defect

Probability of failure for a component including defects:

$$P_{F,component} = \sum_{\alpha} P(g(\alpha) \leq 0) P(\alpha)$$


- Non Destructive Inspection (NDI)

Updated probability of failure for a component:


$$P_{F_{\delta},component} = \sum_{\alpha} \left[P(g(\alpha = 1) \leq 0) PoD(\alpha) + P(g(\alpha) \leq 0) (1 - PoD(\alpha)) \right] P(\alpha)$$

Defects are assumed perfect repaired if detected by NDI

POD-curve: Probability of Detection

Distribution function of defect size without / with NDI

- Average 1 defect per blade
- Average delamination size: 20 cm
- Average size minimum detectable delamination:10 cm

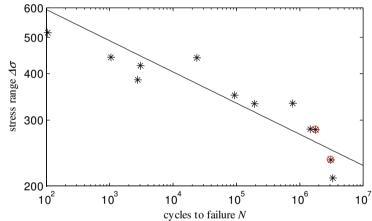
Parameter	Value	Description	
n	5	Number of parallel systems	
m	5	Number of components in each parallel system	
λ	1.0	Model 1: Average number of defects	
χ_{S}	5.0m ⁻¹	Average delamination size $\mu_S = 1/\chi_S$	
χ_{δ}	10.0m ⁻¹	Average NDI size $\mu_{\delta} = 1/\chi_{\delta}$	

Description	Defects	P_F	β
Reference	No defects	3.1.10-3	2.74
Reference	Model 1	$11.7 \cdot 10^{-3}$	2.27
Reference, NDI	Model 1	$4.6 \cdot 10^{-3}$	2.61
Larger system: $n = 5$, $m = 8$	Model 1	$6.7 \cdot 10^{-3}$	2.48
Less reliable NDI: $\chi_{\delta} = 5 \text{m}^{-1}$, <i>NDI</i>	Model 1	$6.0 \cdot 10^{-3}$	2.51
More defects: $\lambda = 2$	Model 1	$21.8 \cdot 10^{-3}$	2.02

Calibration of partial safety factors

Partial safety factors (psf) for loads and strength parameters can be calibrated to a given reliability level taking into account:

- Uncertainty on loads
- Uncertainty on strength parameters
- Model uncertainty for computational model & failure criteria
- Statistical uncertainty (number of tests)


such that less uncertainty \rightarrow less partial safety factors \rightarrow **cost** reduction

Uniform reliability \rightarrow **cost reduction**

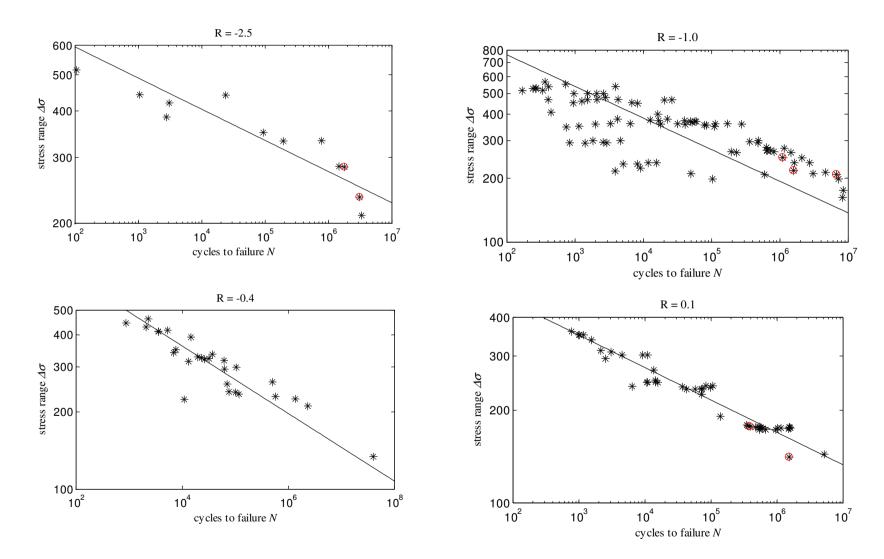
Uncertainties:

- Physical uncertainty SN-curves
- Statistical uncertainty limited number of tests
 - Bayesian modelling
- Model uncertainty Miners rule

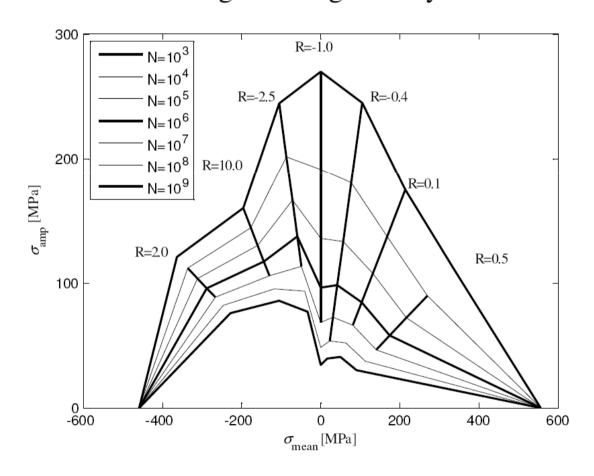
Linear SN-curve:

$$N = K \Delta \sigma^{-m}$$

$$\log N = \log K - m \log \Delta \sigma$$


Physical + Statistical uncertainty: log K Bayesian statistics

OPTIDAT database: geometry R04 MD


R-	Number	Number	m	$\log K$	$\sigma_{\log K}$
ratio	of tests	of run-			
		outs			
0.5	15	0	10.5	27.8	0.36
0.1	45	2	9.5	27.2	0.26
-0.4	28	0	7.6	23.4	0.44
-1.0	84	3	6.7	21.4	0.88
-2.5	10	2	12.0	35.2	0.63
10.0	34	0	22.2	58.7	0.64
2.0	6	3	29.7	73.8	0.35

Constant life diagram for geometry R04 MD

Variable amplitude fatigue tests

Load spectrum: Wisper and Wisperx

Miners rule for linear damage accumulation:

$$D = \sum_{i=1}^{n} \frac{1}{N(\Delta \sigma_i)}$$

Limit state equation:

$$g = \Delta - \sum_{i=1}^{n} \frac{1}{N(\Delta \sigma_i)}$$

 Δ model uncertainty: LN(μ_{Δ} , σ_{Δ})

Variable	Description	Dist.	Mean	Std.
Δ	Uncertainty Miners Rule	LN	0.55	0.49
X_{exp}	Model Uncertainty – Exposure	LN	1.00	0.05
X _{aero}	Model Uncertainty – Aerodynamics	LN	1.00	0.10
X_{dyn}	Model Uncertainty - Dynamic Response	LN	1.00	0.05
X_{stress}	Model Uncertainty - Stress Calculation	LN	1.00	0.03
X_{stat}	Statistical Uncertainty - Load Assessment	LN	1.00	0.024
log K	Physical Uncertainty SN-curve	N	27.768	0.358
\overline{m}	Parameter SN-curve	D	10.541	-
$v_{ m th}$	Load cycles per year	D	$2.88 \cdot 10^6$	-
T	Life time in years	D	20	-

Partial safety factors calibrated to a reliability index $\beta = 3.1$:

IEC 61400-1:

 $\gamma_m \gamma_m = 1.38$

	$\gamma_n \gamma_m$
Reference	1.37
Uncertainty Miners rule	
$\Delta \sim LN(1.00;0.30)$	1.23
$\Delta \sim LN(0.90;0.55)$	1.27
$\Delta \sim LN(0.45;0.40)$	1.39
Model uncertainty aerodynamic	
$X_{aero} \sim \text{LN}(1.00; 0.05)$	1.32
$X_{aero} \sim LN(0.95;0.10)$	1.31
Model uncertainty SN-curve	
$\log K \sim N(27.768; 0.200)$	1.34

Summary / Conclusions

- Basis for reliability-based / probabilistic design
- Reliability analysis of blades with defects
 - Updating by NDI and Bayesian methods
 - Illustrated by example extreme load
- Calibration of partial safety factors
 - Illustrated by example fatigue

Future work

- Stochastic models for probabilistic design to be 'standardized'
- Stochastic modelling of defects for 'real' blades
- Reliability-based calibration of partial safety factors using test results at different levels by Bayesian methods
- Reliability-based test planning

